High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models
نویسندگان
چکیده
Bayesian Optimization (BO) is commonly used to optimize blackbox objective functions which are expensive to evaluate. A common approach is based on using Gaussian Process (GP) to model the objective function. Applying GP to higher dimensional settings is generally difficult due to the curse of dimensionality for nonparametric regression. Existing works makes strong assumptions such as the function is low-dimensional embedding (Wang et al., 2013) or is axis-aligned additive (Kandasamy et al., 2015). In this paper, we generalize the existing assumption to a projected-additive assumption. Our generalization provides the benefits of i) greatly increasing the space of functions that can be modeled by our approach, which covers the previous works (Wang et al., 2013; Kandasamy et al., 2015) as special cases, and ii) efficiently handling the learning in a larger model space. We prove that the regret for projected-additive functions has only linear dependence on the number of dimensions in this general setting. Directly using projectedadditive GP (Gilboa et al., 2013) to BO results in a non-box constraint, which is not easy to optimize. We tackle this problem by proposing a restricted-projection-pursuit GP for BO. We conduct experiments on synthetic examples and scientific and hyper-parameter tuning tasks in many cases. Our method outperforms existing approaches even when the function does not meet the projected additive assumption. Last, we study the validity of the additive and projected-additive assumption in practice. Appearing in Proceedings of the 19 International Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright 2016 by the authors.
منابع مشابه
Projection Pursuit for Exploratory Supervised Classification
In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting low-dimensional projections via the optimization of a criterion function called the projection pursuit index. Very few projection pursuit indices incorporate class or group inform...
متن کاملThree-Dimensional Projection Pursuit
The development and usage of a three-dimensional projection pursuit software package is discussed. The well-established Jones and Sibson moments index is chosen as a computationally efficient projection index to extend to 3D. Computer algebraic methods are extensively employed to handle the long and complex formulae that constitute the index and are explained in detail. A discussion of importan...
متن کاملAn Improved Projection Pursuit Clustering Model and its Application Based on Quantum-behaved Particle Swarm Optimization
Extracting the information with biological significance in amounts of gene expression data is an important research direction. Clustering algorithm in this area has been increasingly widely applied. According to the characteristic of gene expression data, the improved projection pursuit cluster model was introduced in this area and Quantum-behaved Particle Swarm Optimization(QPSO) was put forwa...
متن کاملLocalized Exploratory Projection Pursuit
Based on CART, we introduce a recursive partitioning method for high dimensional space which partitions the data using low dimensional features. The low dimensional features are extracted via an exploratory projection pursuit (EPP) method, localized to each node in the tree. In addition, we present an exploratory splitting rule that is potentially less biased to the training data. This leads to...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کامل